December 7, 2012, Training Workshop, Hong Kong Observatory

Future Development of Mesoscale Modeling and Data Assimilation in JMA

Masaru Kunii

Meteorological Research Institute / JMA, Japan <u>mkunii@mri-jma.go.jp</u>

Future Development of DA

- Development of a cloud resolving 4 dimensional data assimilation system
 - Assimilation of dense observation data to dynamically predict deep convection and associated local heavy rainfalls.
- Development and validation of a cloud resolving ensemble analysis forecast system
 - Probabilistic quantitative forecast for heavy rainfalls using ensemble data assimilation NWP.

K-computer project – development of cloud resolving 4DVAR –

Approaches to predict local heavy rain Forecast accuracy Limit of deterministic forecast Short range forecast for precipitation Current Nowcasting **Current NWP model Extrapolation 2h** 6hr **1day Forecast period**

2h 6hr

1day

Forecast period

Approaches to predict local heavy rain (2) Forecast accuracy Limit of deterministic forecast Nowcasting **Cloud resolving model** and data assimilation Short range forecast for Reduce the gap precipitation between nowcasting and NWP by high-**Current NWP model** resolution data assimilation **Extrapolation**

2h 6hr

1day

Forecast period

K-computer project

The K-computer has been constructed in Kobe. Whole system is complete in 2012. http://www.nsc.riken.jp/index-eng.html Fujitsu SPARC64™ VIIIfx, 8 cores, 128 Gflops x 80,000 8.162 Pflops in the LIMPACK benchmark in June 2011 with a computing efficiency ratio of 93.0%.

Ukawa (2010)

Field 3: Global Change Prediction for Disaster Prevention

Atmospheric Sciences

Subject 1: Projection of tropical cyclones in climate change by a cloud resolving global model (NICAM)

Subject 2: Prediction of heavy rainfalls by a cloud resolving NWP system

JAMSTEC and AORI, University of Tokyo

MRI and JMASTEC

To show a feasibility of the dynamical and probabilistic prediction of local heavy rainfalls in the scale of local municipalities by a cloud resolving ensemble NWP system (hourly, 1-2 km, 50-100 members)

Assimilation of cloud scale dense observation data

Estimation of the forecast error covariance form the cloud resolving ensemble prediction

Local Heavy rainfall on September 2005 in Tokyo

Local heavy rainfall on 4 September 2005 100mm precipitation in 1 hour was observed in Tokyo. No significant disturbances over Tokyo metropolitan area.

Cloud resolving 4DVAR with cloud microphysics

(Kawabata et al., 2011; Mon. Wea. Rev.)

Kessler warm rain process was implemented in LT/ADJ models.

4DVAR assimilation of

- Doppler Radar's Radial Winds
- Radar Reflectivity
- GPS precipitable water vapor
- Surface observations (wind, temperature)

FIG. 9. Schematic diagram of assimilation experiment.

Assimilation of radar reflectivity 2030-2100JST

(Kawabata et al., 2011; Mon. Wea. Rev.)

FIG. 9. Schematic diagram of assimilation experiment.

Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4D-Var assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area, *Mon. Wea. Rev.* **139**, 1911-1931.

Approaches to predict local heavy rain

Ensemble Forecast

Time integration of the probabilistic density function is practically impossible. In the ensemble forecast, finite members approximate the features of probabilistic density function of atmospheric states.

2km ensemble prediction from JMA nonhydrostatic 4D-VAR analysis for 2011 Niigata-Fukushima heavy rainfall

03-06 UTC, 29 July 2011

50mm/3h

20 mm/3h

1mm/3h5mm/3h10mm/3hProbability of precipitation at FT=18Solid probability even for 50mm/3h

LETKF

$$\mathbf{P}^{f} \approx \frac{\delta \mathbf{X}^{f} (\delta \mathbf{X}^{f})^{T}}{m-1} = \delta \mathbf{X}^{f} \widetilde{\mathbf{P}}^{f} (\delta \mathbf{X}^{f})^{T} \qquad \widetilde{\mathbf{P}}^{f} = \frac{\mathbf{I}}{m-1} : [m \times m]$$

In the space spanned by $\delta \mathbf{X}^{f}$

$$\widetilde{\mathbf{P}}^{a} = [(\underline{m-1})\mathbf{I} / \rho + (\delta \mathbf{Y})^{T} \mathbf{R}^{-1} \delta \mathbf{Y}]^{-1} = \mathbf{U}\mathbf{D}^{-1}\mathbf{U}^{T}$$

Eigenvalue decomposition: $\mathbf{U}\mathbf{D}\mathbf{U}^{T} : [m \times m]$

Analysis equations

I ETKE analysis

$$\overline{\mathbf{x}}^{a} = \overline{\mathbf{x}}^{f} + \delta \mathbf{X}^{f} \widetilde{\mathbf{P}}^{a} (\delta \mathbf{Y})^{T} \mathbf{R}^{-1} (\mathbf{y}^{o} - H(\mathbf{x}^{f}))$$
$$\delta \mathbf{X}^{a} = \delta \mathbf{X}^{f} [(m-1)\widetilde{\mathbf{P}}^{a}]^{1/2} = \underline{\delta \mathbf{X}^{f} \sqrt{m-1} \mathbf{U} \mathbf{D}^{-1/2} \mathbf{U}^{T}}$$

Ensemble Transform Update

$$\mathbf{X}^{a} = \mathbf{\overline{x}}^{f} + \delta \mathbf{X}^{f} \left(\mathbf{\widetilde{P}}^{a} (\delta \mathbf{Y})^{T} \mathbf{R}^{-1} (\mathbf{y}^{o} - \overline{H(\mathbf{x}^{f})}) + \sqrt{m - 1} \mathbf{U} \mathbf{D}^{-1/2} \mathbf{U}^{T} \right)$$
Analysis Update

NHM-LETKF

- Application of NHM and its DA systems to K-computer
- LETKF experiment of Myanmar cyclone Nargis and the Niigata-Fukushima heavy rainfall
- Nesting simulation with a building resolving model with a horizontal resolution of 10 m

2008年4月30日-5月2日、ミャンマーサイクロンNargisの LETKF同化実験、京を使用した結果。

Intrusion of see breeze for Sendai for 9 July 2007. i

Sub-subject 3

Evaluation of uncertainty of cloud resolving model using LES and spectral BIN method

Super high resolution simulation of typhoon and tornadoes

Numerical simulation of a tornado observed on 17 September 2006 by NHM with a horizontal resolution of 50 m. (Mashiko et al. Mon. Wea. Rev.)

Numerical simulation of a super typhoon in global warming climate by CReSS, Nagoya University.

Application of NHM to K computer

Elapse time using thread parallelization.

Communication and computation times .

10 loops have been tuned for K-computer and acceleration of 10-15% in total elapse time was achieved.

	16 プロセス 8 スレッド			64 プロセス 8 スレッド		
処理区分	AS-IS版 [sec]	チューニンク [*] 版 [sec]	高速化 率	AS-IS版 [sec]	チューニンク [*] 版 [sec]	高速化 率
Main Loop 演 算	118.533	102.810	115.3%	31.456	28.357	111.0%
Main Loop 通 信	0.964	0.976	-	0.859	0.879	-

current performance for MSM domain (721x577x50) with 72 nodes is 5.1%

Performance at K-computer

performance for MSM domain (721x577x50)

For the case of 72 nodes of K-computer

Weak scalability at K computer

# of node	Elapsed (s) Application	MFLOPS	Parallelization ratio	
6	611.9	37948.1	0.08	
24	624.0	148855.1	0.98	
18	223.6	104894.6	0.98	
72	228.7	410067.1		
72	70.3	340813.5	1.00	
288	70.6	1357087.6		
288	29.8	840259.8	0.97	
1152	30.5	3271411.7		
1152	18.2	1254245.0	0.07	
4608	19.0	4887132.3	0.97	
4608	15.3	2089605.3	0.93	
18432	16.4	7811590.6		