

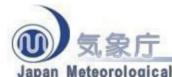
Applications of and Model Post-processing of JMA-NHM

Hiroshi Kusabiraki (JMA/NPD)

Training Workshop on the Latest Developments on the Use and Interpretation of NWP Models

HKO, 3-7 Dec 2012

Purposes of this lecture


- To understand the necessity and the technique of making the "Guidance".
- To understand the methods of making the "Guidance".
- To introduce the guidance actually used in JMA.

Contents

- 1 Purpose for introducing "Guidance" (post process of NWP model output)
- 2 Methods to make guidance
- 3 Example and Use of guidance in JMA

Flow of forcasting

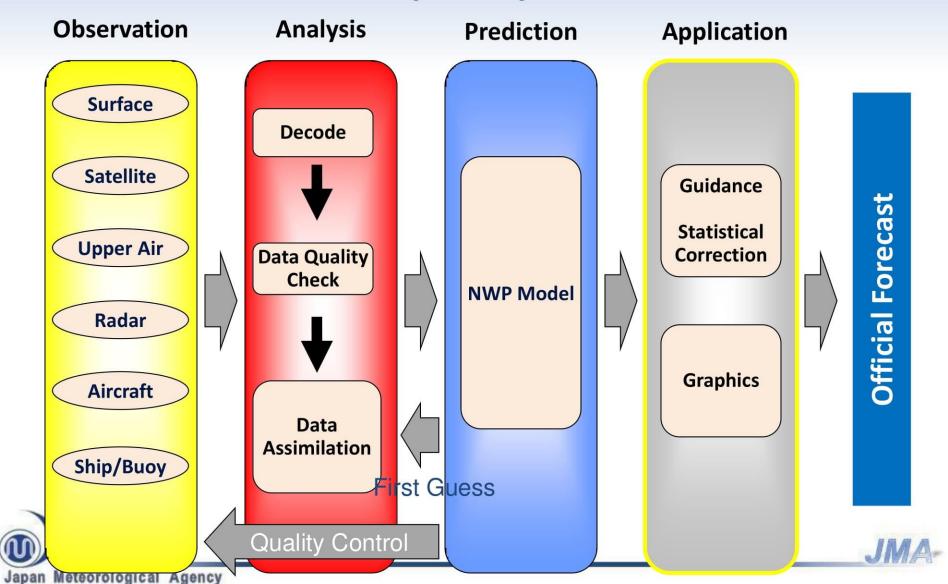
Observation

Analysis

* NWP: Numerical Weather Prediction

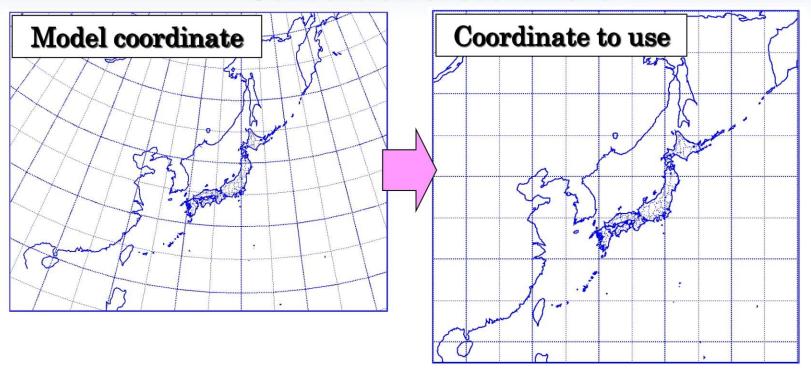
NWP* model

Can we use always NWP model output directly?

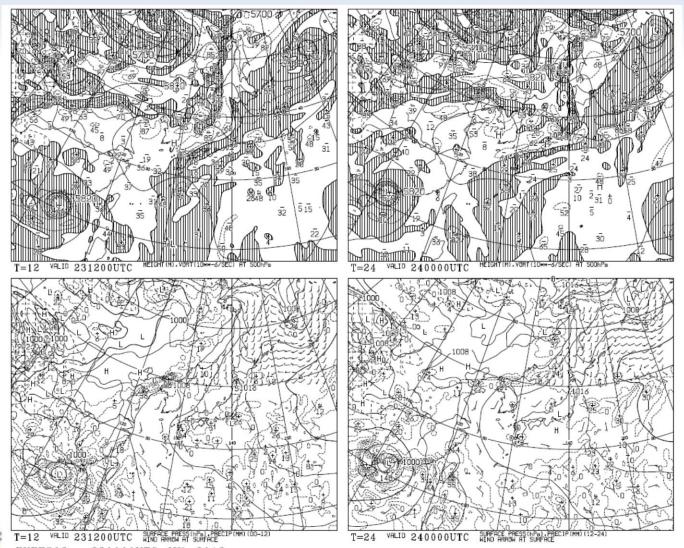


Numerical Analysis and Prediction System (NAPS)

Purpose and kind application

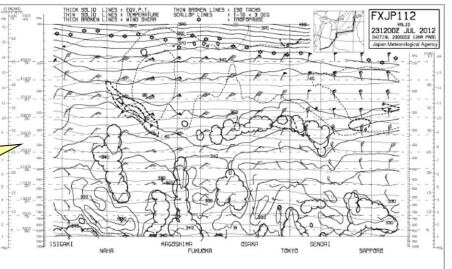

- Conversion into the form to be needed for forecast
 - Conversion procedures of model output
 - Ex.) Model coordinate
 - Ex.) Air temperature and mixing ratio
 - Visualization of model outputs
 - Ex.) Facsimile charts, graphics for WEB
- Improvement of accuracy with statistical methods, and translation of model outputs into other weather elements
 - Guidance

Example of processing of NWP model output

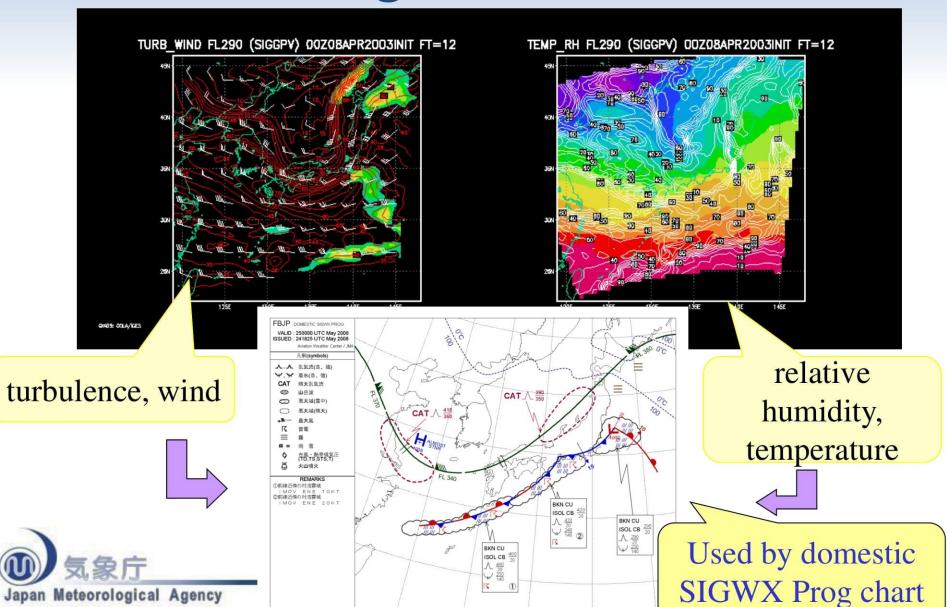

Conversion of coordinate

 The model coordinate is converted into the form to be needed by users. For example, rectangular coordinate of latitude and longitude is used in the maps for disaster prevention.

Visualization — Facsimile chart of NWP model



Facsimile Charts for flight operation


- Cross section chart of forecast along en-route for domestic flight (FT=06, 12)
- temperature, equivalent potential temperature, T-Td, wind, vertical wind shear, isotachs, and tropopause

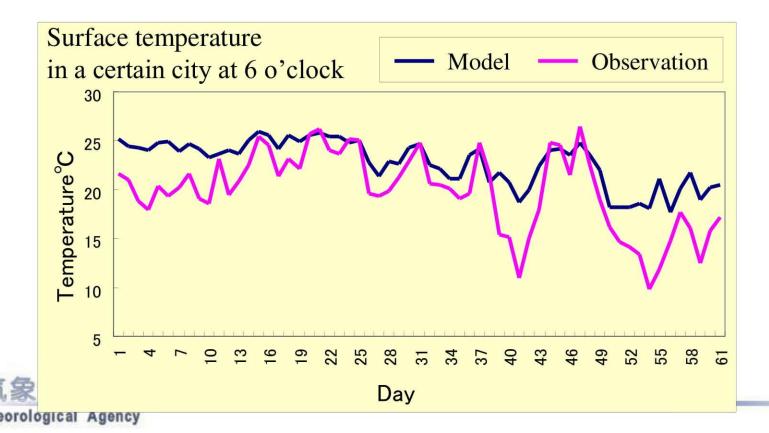
Used by forecasters and operators

GPV of Significant Weather

Why is the Guidance needed?

- (1) Some elements that the model does not predict will be needed.
 - Objective translation makes a <u>Product to meet a</u> demand for forecast
 - Categorized weather (fine, cloudy, rainy...)
 - Probability of precipitation
 - Probability of thunderstorms
 - Visibility, and so on

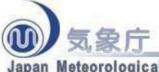
Why is the Guidance needed?


- (2) Some errors are included in the model output.
 - NWP models have systematic biases caused by Errors in initial field, limit of resolution, and approximation in dynamical and physical process ... etc.
 - The guidance is a technology that appropriately removes the systematic error of the NWP models' output.
 - To correct model's error leads <u>improvement of the</u> <u>accuracy of forecasting products</u>.
 - Precipitation amount
 - Wind (speed, direction)
 - Temperature (max., min.), and so on

Why is the Guidance needed?

- If we can use the NWP model output directly, there is no need to use the Guidance.
- However, we cannot use it directly, because...

Flow of forecasting Therefore... Observation


Analysis

NWP model

Guidance (Application)

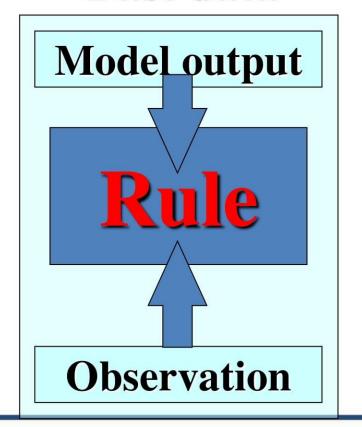
Forecaster

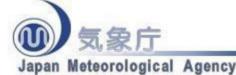
Correction of the errors of model outputs, and translation of model outputs into weather elements.

Meteorological Agency

Difference of data used for the rule making

 To make the guidance products is to make "Rules of translation"

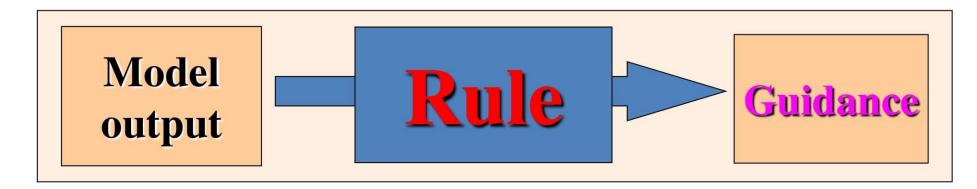

• The "Rule of translation" is made with the predicted weather of NWP model and the actual weather (observation).



Rule of translation

1. Make the rule with the past data of model output and observation.

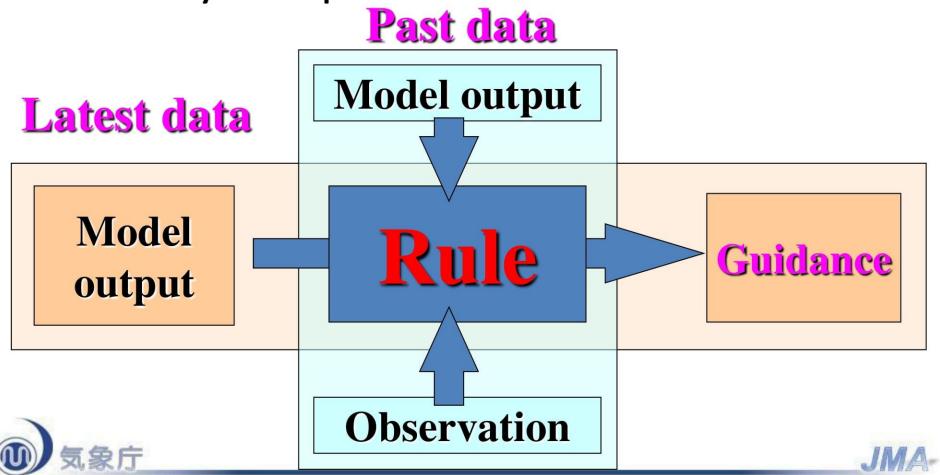
Past data



Rule of translation

2. Forecast with the rule applying the latest model output.

Latest data



Rule of translation

- 1. Make the rule with the past NWP model output and observation data.
- 2. Modify the output with the rule.

Meteorological Agency

Correct model's error

Systematic errors in NWP model

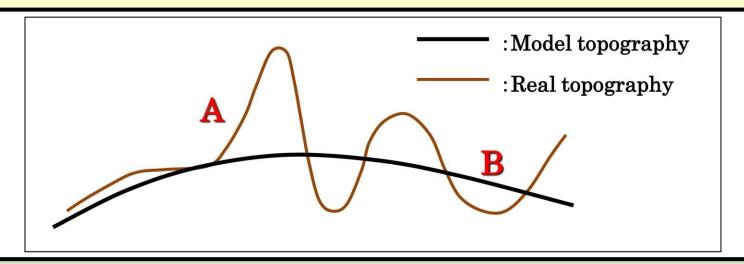
[Examples of the situation]

- The surface temperature predicted by NWP model is <u>always</u>
 <u>lower by 5 degrees</u> compared with the observation.
- <u>Precipitation</u> of forecast by the model is <u>less</u> compared with that of observation, <u>whenever surface wind direction is southwest</u>.


These errors can be corrected.

Correct model's error

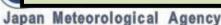
Fig. Relationship between maximum temperature and surface wind direction at an observatory.



- Systematic errors are found in the upper figure, i.e.
- Generally, temperatures of the model (T_m) are lower than that of observations (T_o) by 5 degrees.
- $T_m = T_o$ when the surface wind direction is southwest (SW).

Correct model's error

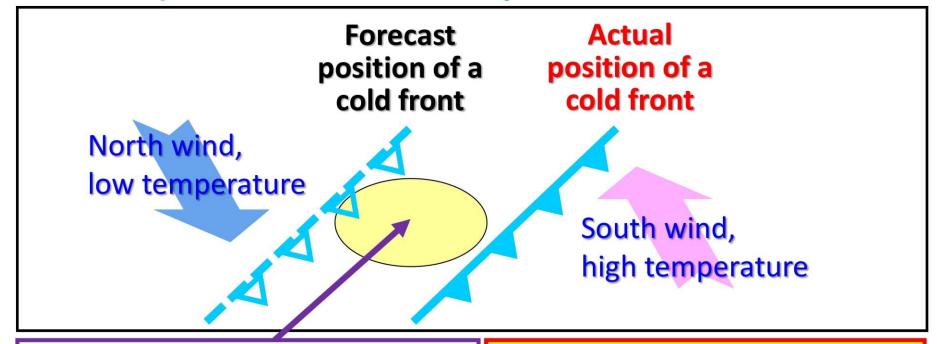
Difference of the effects of topography due to the model resolution.



Point A: <u>actual hilside is steeper than model's</u>

→ rain is heavier than that of model output

Point B: valley (in real terrain) and slope (in the model)


→ higher temperature and weaker wind (than those of model output)

Random errors in NWP model

The errors of the forecast field of the model affects the accuracy of the guidance.

Ex.) Forecast error in the position of cold front

Forecast: South wind, Warm

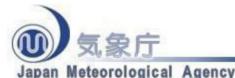
Actual: North wind, Cold

It is impossible to correct this error with the guidance.

Translation of model output

Variables in NWP model output (Grid Point Value [GPV])

Pressure, height, wind, temperature, humidity,... on surface, 925hPa, 850hPa, 700hPa, 500hPa,...


Translation

Variables (not calculated in NWP model directly)

- Categorized weather (fine, cloudy, rainy...)
- Probability of precipitation
- Probability of thunderstorms
- Snowfall amount
- Visibility, ...

Contents

- 1 Purpose for introducing "Guidance" (post process of NWP model output)
- 2 Methods to make guidance
- 3 Example and Use of guidance in JMA

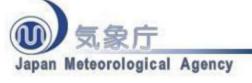
Methods to make Guidance

- Methods to make "Rules"...
 - Multiple Regrassion Analysis
 - Kalman Filter
 - Neural Network
 - Logistic Regression

Multiple Regression Analysis

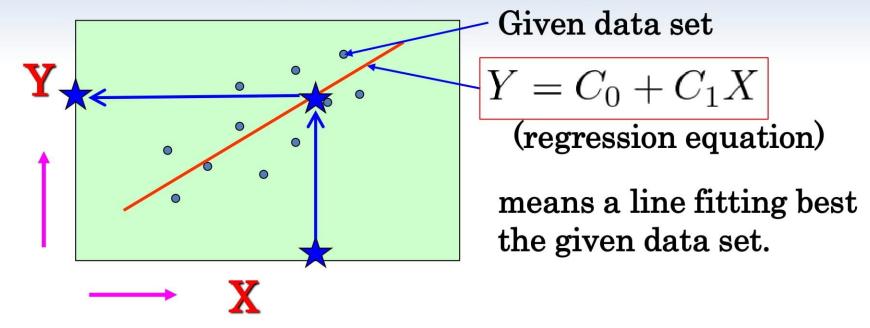
as one of the method for the guidance.

$$Y = X_{\rm o} + \Sigma X_{\rm i} \times C_{\rm i} \ (i = 1, 2, 3, ...)$$


Y: Predictand (temperature, probability of precipitation, ...)

X_i: Predictors (NWP model output)

C_i: Regression coefficients



How can we decide C_i values?

Example of regression analysis with 2 variables.

- When a new X value is given,
 "Y of the point on the line corresponding to X" is the most suitable.
- Presumption of "method of least squares"

Characteristics of multiple regression

Merit:

- 1. Easy to make.
- 2. Backgrounds of the forecast value are comprehensible.
- 3. Selection of the predictors is objective.

Demerit:

- 1. Not possible to apply to the change of numerical prediction model.
- 2. A large amount of data is necessary to make.

Usage:

Almost not used as a method to make guidance in JMA recently.

Characteristics of multiple regression

When the NWP model is replaced,
 "Translation rule" should be also remade.

- To grasp the characteristics of the new model, there will be sufficient period (2 or 3 years).
- The guidance of successive study is applicable to the model changes and is used mainly in the recent operations of JMA.

Kalman Filter (outline)

as one of the methods for the guidance.

$$Y = C_0(t) + \Sigma(C_i(t)X_i) \ (i = 1, 2, 3, ...)$$

Y: Predictand (temperature, probability of precipitation, ...)

Xi: Predictors (NWP model output)

Ci(t): Regression coefficients

Coefficients are estimated in each step.

- The error of the prediction fomula is evaluated.
- The coefficients are estimated to decrease the error.
- This operation is repeated in each step (initial time of the model).

Coefficient's change of "Temperature Guidance"

Bias of NWP
Coefficient

In the case of only C_0 is used for the coefficient of the prediction fomula, C_0 changes according to the bias of the model.

Estimation of the coefficients

$$C_{\rm i}(t) = C_{\rm i}^{\rm old} + \delta(t)(Y_{\rm obs} - Y_{\rm fct})$$

C_i(t) : Estimated coefficient

C_i^{old}: Used coefficient in forecast eq.

 $\mathbf{Y_{fct}}$: Predicted value using $\mathbf{C^{old}} \left(Y_{fct} = C_0^{old}(t) + \Sigma(C_i^{old}(t)X_i) \right)$

Y_{obs} : Observed value

 $Y_{obs} - Y_{fct}$: Error of the prediction fomula

δ(t) : Rate of change : Kalman gain

Characteristic of Kalman Filter

Merit:

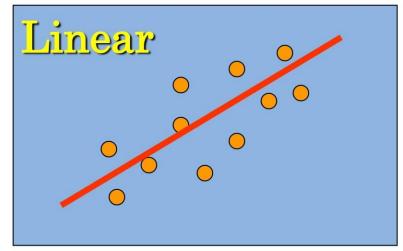
- 1. Follows automatically to the change of NWP model.
- 2. Backgrounds of the result of a forecast are comprehensible.
- 3. Possible to make with a small amount of data.

Demerit:

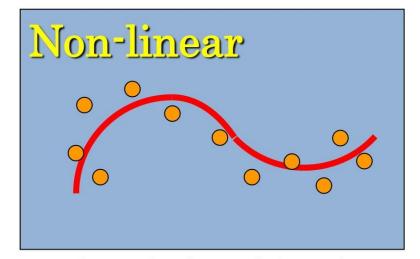
- 1. Change of the coefficients makes it difficult to understand the result immediately.
- 2. Systems such as predictors are set subjectively.

Usage

Precipitation amount, Probability of precipitation,
 Temperature, Wind, Visibility ... etc



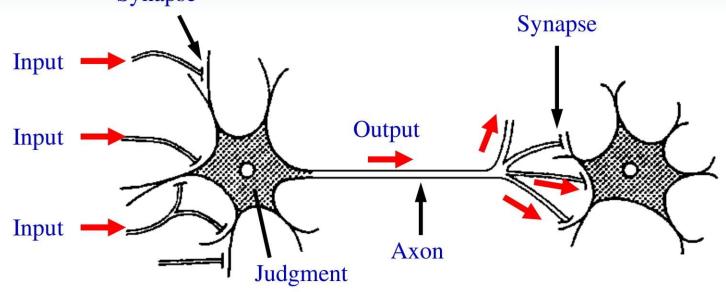
Neural Network (outline)


as one of the method for the guidance.

The Neural Network (NRN) is one of the artificial intelligence methods and is an effective technique to analyze non-linear phenomena.

- A non-linear relation can be forecasted.
- prediction fomula can be optimized in each step.

The relation of data is expressed by a straight line.



The relation of data is expressed by a curve.

Neural Network (Image)

Operation of neuron (neuronal cell)
Synapse

- Electric potential in the neuron rises when the input signal reaches to the neuron.
- The electric potential in the neuron exceeds the threshold.
 - The output pulse is generated.
- The electric potential does not exceed the threshold.
 - The output pulse is not generated.

Characteristic of Neural Network

Merit:

- 1. Nonlinear relation can be dealt with.
- 2. Follows automatically to the change of NWP model.

• Demerit:

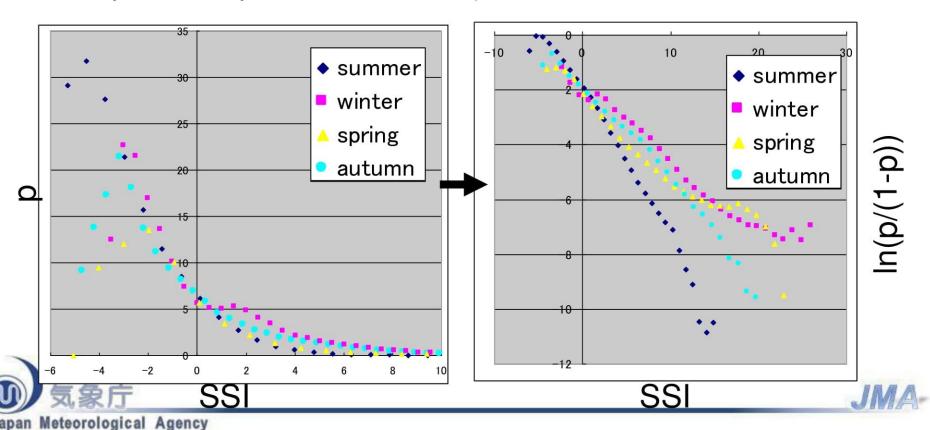
- 1. The backgrounds of the forecast are incomprehensible due to its complexity.
- 2. Variance of relation (weights) makes difficult to understand the characteristics.
- 3. The selection of the predictor is subjective.

Usage:

- One of the methods that JMA uses for guidance.
 - Weather (distinction between fine and cloudy),
 - Humidity (daily minimum),
 - Maximum precipitation amount...

Logistic regression (outline)

as one of the method for the guidance.


- Logistic regression is used to make guidance of probability whose outputs (observation data) is binomial (0/1, occur or not occur).
- p as probability is provided by the equation as follows:

$$\ln\left(\frac{p}{1-p}\right) = C_0 + C_1 X_1 + C_2 X_2 + \dots$$

$$p = \frac{1}{1+\exp[-(C_0 + \Sigma(C_{\rm i} X_{\rm i}))]} \ (i=1,\ 2,\ 3,\ \dots)$$
 sigmoid function

Logistic regression

- Guidance with Logistic regression can deal with the nonlinear relation between predictand and predictors.
 - e.g. relation between SSI (predictor) and p (predictand; probability of thunderstorm)

Characteristic of Logistic regression

Merit:

- 1. Nonlinear relation can be dealt with.
- 2. The selection of the predictors is objective.
- 3. Backgrounds of the forecast are comprehensible.

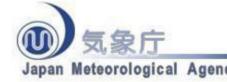
Demerit:

- 1. Can not follow to the change of NWP model.
- 2. A large amount of data is necessary to make guidance.

Usage:

- One of the methods that JMA uses for guidance.
 - Probability of thunderstorms

Contents


- 1 Purpose for introducing "Guidance" (post process of NWP model output)
- 2 Methods to make guidance
- 3 Example and Use of guidance in JMA

Example of guidance in JMA

- Let's see what kinds of guidance based on the result of JMA-NHM in JMA.
 - For disaster prevention
 - For aviation forecast

For Disaster Prevention

Maximum Precipitation	maximum precipitation during 1, 3, 24 hours (5km mesh)
Maximum Wind Speed	maximum wind speed/direction during 3 hours (at observation site)
Maximum Snowfall	maximum snowfall during 3, 6, 12, 24 hours (5km mesh)
Probability of Thunderstorms	probability of thunderstorms during 3 hours (20km mesh)

Method of making Guidance (For Disaster Prevention)

Kalman Filter

- Probability of precipitation
- Mean precipitation amount
- Temperature
- Mean & maximum wind speed/direction

Neural Network

- Categorized weather (ratio of sunshine duration)
- Daily minimum humidity
- Snowfall amount

Logistic regression

- Probability of thunderstorms
- Maximum Snowfall
- Composition of Kalman Filter & Neural Network
- Maximum precipitation amount

For Aviation Forecast

	minimum visibility during 1 hour
\/icibili+v	mean visibility during 1 hour
Visibility	probability of visibility less than 5km during 3hours
	probability of visibility less than 1.6km during 3hours
Cloud	cloud amount and height of 3 layers (at minimum ceiling during 1 hour)
Wind	maximum wind speed/direction during 1 hour
vvina	mean wind speed/direction during 1 hour
Weather	categorized weather during 1 hour
Probability of Thunderstorms	probability of thunderstorms during 3 hours (around airport)
Probability of ceiling blow	Probability of ceiling blow 600and1000ft during 3 hours (around airport)
Tomporaturo	time series
Temperature	maximum, minimum temperature (03, 09, 15, 21UTC)

Method of making Guidance (For Aviation Forecast)

Kalman Filter

- Temperature
- Mean & maximum wind speed/direction
- Mean & minimum visibility
- Probability of minimum visibility

Neural Network

Cloud amount & height of 3 layers at minimum ceiling

Logistic regression

- Probability of thunderstorms
- Probability of ceiling blow 600and1000ft

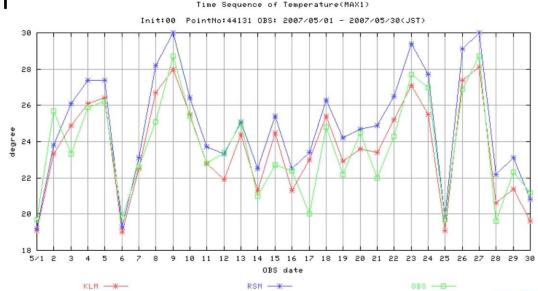
Another method (Flow chart)

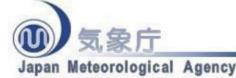
Categorized weather

Some examples of the Guidance used in JMA

- Temperature
- Probability of Thunderstorms
- TB index

Temperature

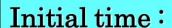

Output:


- Time-series temperature every 1, 3 and 6 hours.
- Maximum/minimum temperature.
- 925 stations (including Meteorological Observatories)
 - Predictand: Error margin of the surface temperature by model
 [Observation value Model value]
- Method : Kalman Filter

---- NWP model output

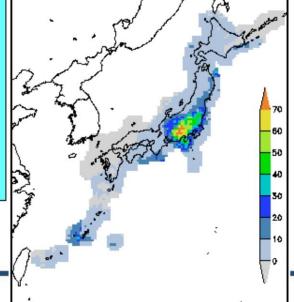
— Guidance

Observation


Probability of thunderstorms

- Probability of thunderstorms during 3 hours.
- Every 20km square grids
- Method : Logistic regression

Observed


MSM

12UTC, 09 Sep. 2007

Valid time:

03UTC, 10 Sep. 2007

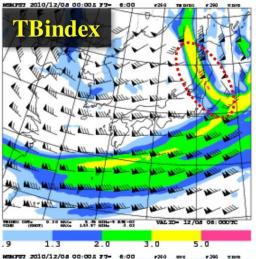
TB index

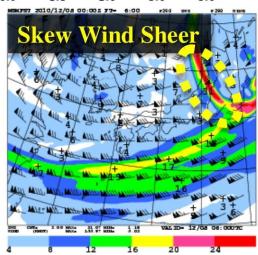
- Existing indices and newly-developed indices are combined by logistic regression method.
- By using only independent indices for explanatory variables, operators can easily understand which indices contribute to Tbindex.
- TBindex improves forecast accuracy significantly compared to VWS.

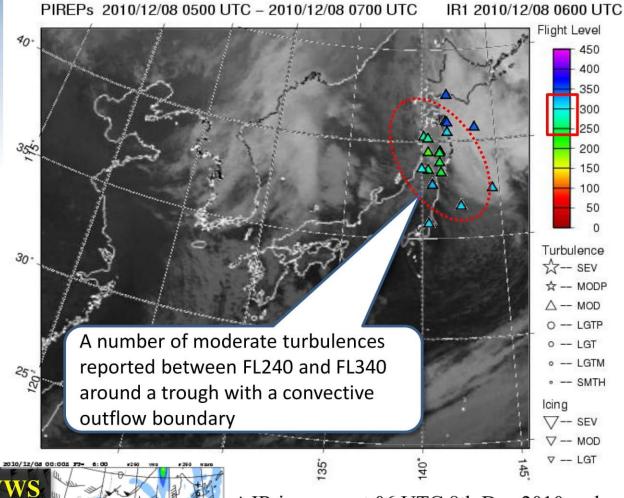
6 newly-developed indices

- Skew wind shear
- Convective cloud index
- Lee wave index
- Vertically propagating mountain wave index
- Mid-level cloud-base index
- Transverse band index

9 existing indices

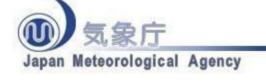

- Richardson number
- Temperature gradient
- Miyakoshi's Index (TPI, TSI)
- VWS
- HWS
- TI1
- TI2
- Dutton




Case Study

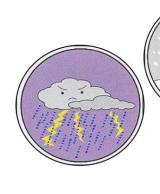
Clear Air Turbulence

↓6-hour forecast at FL290 Initial time: 00Z, 8 Dec, 2010



- ↑ IR imagery at 06 UTC 8th Dec 2010 and turbulences observed between 05 and 07 UTC
- ← VWS is small (3 ~6 kt/1000ft) in the area of turbulence, but TBindex is large because of large skew wind shear

Conclusion of this lecture


- Guidance as statistical procedure of NWP model output gives the reliable forecast.
 - Correct model's errors
 - Translation of model output

 However, random errors cannot be corrected by the guidance. Forecasters must carefully watch the difference between model output, guidance and actual phenomena.



END Thank you

